Simple-MCP-Build
This repository includes the Model Context Protocol (MCP) framework that ClimateGPT Team 1 is developing.
Model Context Protocal (MCP) Implementation
This repository includes the Model Context Protocol (MCP) framework that ClimateGPT Team 1 is developing.
๐ Project Structure
/mcp-framework โโโ modules/ # Core MCP components โ โโโ context_manager.py # Stores execution context memory โ โโโ data_loader.py # Handles dataset loading โ โโโ query_manager.py # Routes queries dynamically โ โโโ pipeline_manager.py # Executes MCP steps โโโ models/ # Test EDA / initial models for MCP framework checking โ โโโ scenario_projection.py # Temp trend analysis โ โโโ temperature_trends.py # Climate scenario projections โ โโโ Model3.py # Model 3 โโโ config/ # Configuration settings โ โโโ config.yaml # Defines dataset paths and pipeline steps โโโ logs/ # Execution logs โ โโโ mcp_execution.log โโโ tests/ # Unit tests for MCP validation โโโ main.py # Entry point for MCP execution โโโ requirements.txt # Python dependencies โโโ README.md # Project documentation
How to run MCP Framework
-
Clone the repository (if not already cloned):
git clone https://github.com/ newsconsole/GMU_DAEN_2025_01_A.git -
Switch to the ClimateGPT Team 1 Branch:
git checkout ClimateGPT_Team1 -
Make sure to set up venv (Virtual Env)
1. python -m venv venv 2. venv\Scripts\Activate -
Install dependencies (requirements.txt):
pip install -r requirements.txt -
Run the MCP Pipeline
python main.py
Configuration & Execution
- The MCP pipeline is dynamically controlled by
config/config.yamlwhich defines the datasets and pipeline steps - Logs are stored in
logs/mcp_execution.logfor debugging and tracking execution results
Recent Updates
- Implemented initial MCP Framework with modular design
- Added dynamiic query routing & context memory