grok-mcp
A Model Context Protocol (MCP) plugin that provides seamless access to Grok AI's powerful capabilities directly from Cline.
Grok MCP Plugin
A Model Context Protocol (MCP) plugin that provides seamless access to Grok AI's powerful capabilities directly from Cline.
Features
This plugin exposes three powerful tools through the MCP interface:
- Chat Completion - Generate text responses using Grok's language models
 - Image Understanding - Analyze images with Grok's vision capabilities
 - Function Calling - Use Grok to call functions based on user input
 
Prerequisites
- Node.js (v16 or higher)
 - A Grok AI API key (obtain from console.x.ai)
 - Cline with MCP support
 
Installation
- 
Clone this repository:
git clone https://github.com/Bob-lance/grok-mcp.git cd grok-mcp - 
Install dependencies:
npm install - 
Build the project:
npm run build - 
Add the MCP server to your Cline MCP settings:
For VSCode Cline extension, edit the file at:
~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.jsonAdd the following configuration:
{ "mcpServers": { "grok-mcp": { "command": "node", "args": ["/path/to/grok-mcp/build/index.js"], "env": { "XAI_API_KEY": "your-grok-api-key" }, "disabled": false, "autoApprove": [] } } }Replace
/path/to/grok-mcpwith the actual path to your installation andyour-grok-api-keywith your Grok AI API key. 
Usage
Once installed and configured, the Grok MCP plugin provides three tools that can be used in Cline:
Chat Completion
Generate text responses using Grok's language models:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>chat_completion</tool_name>
<arguments>
{
  "messages": [
    {
      "role": "system",
      "content": "You are a helpful assistant."
    },
    {
      "role": "user",
      "content": "Hello, what can you tell me about Grok AI?"
    }
  ],
  "temperature": 0.7
}
</arguments>
</use_mcp_tool>
Image Understanding
Analyze images with Grok's vision capabilities:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>image_understanding</tool_name>
<arguments>
{
  "image_url": "https://example.com/image.jpg",
  "prompt": "What is shown in this image?"
}
</arguments>
</use_mcp_tool>
You can also use base64-encoded images:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>image_understanding</tool_name>
<arguments>
{
  "base64_image": "base64-encoded-image-data",
  "prompt": "What is shown in this image?"
}
</arguments>
</use_mcp_tool>
Function Calling
Use Grok to call functions based on user input:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>function_calling</tool_name>
<arguments>
{
  "messages": [
    {
      "role": "user",
      "content": "What's the weather like in San Francisco?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
          "type": "object",
          "properties": {
            "location": {
              "type": "string",
              "description": "The city and state, e.g. San Francisco, CA"
            },
            "unit": {
              "type": "string",
              "enum": ["celsius", "fahrenheit"],
              "description": "The unit of temperature to use"
            }
          },
          "required": ["location"]
        }
      }
    }
  ]
}
</arguments>
</use_mcp_tool>
API Reference
Chat Completion
Generate a response using Grok AI chat completion.
Parameters:
messages(required): Array of message objects with role and contentmodel(optional): Grok model to use (defaults to grok-2-latest)temperature(optional): Sampling temperature (0-2, defaults to 1)max_tokens(optional): Maximum number of tokens to generate (defaults to 16384)
Image Understanding
Analyze images using Grok AI vision capabilities.
Parameters:
prompt(required): Text prompt to accompany the imageimage_url(optional): URL of the image to analyzebase64_image(optional): Base64-encoded image data (without the data:image prefix)model(optional): Grok vision model to use (defaults to grok-2-vision-latest)
Note: Either image_url or base64_image must be provided.
Function Calling
Use Grok AI to call functions based on user input.
Parameters:
messages(required): Array of message objects with role and contenttools(required): Array of tool objects with type, function name, description, and parameterstool_choice(optional): Tool choice mode (auto, required, none, defaults to auto)model(optional): Grok model to use (defaults to grok-2-latest)
Development
Project Structure
src/index.ts- Main server implementationsrc/grok-api-client.ts- Grok API client implementation
Building
npm run build
Running
XAI_API_KEY="your-grok-api-key" node build/index.js
License
This project is licensed under the MIT License - see the LICENSE file for details.